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In a fluorescence study of raw cane sugar samples, two-way and three-way chemometric methods
have been used to extract information about the individual fluorophores in the sugar from
fluorescence excitation-emission landscapes. A sample set of 47 raw sugar samples representing a
varied selection was analyzed, and three individual fluorophores with (275, 350) nm, (340, 420)
nm, and (390, 460) nm as their approximate excitation and emission maxima were found. The spectral
profiles of the fluorophores were estimated with the three-way decomposition model PARAFAC.
Two-way principal component analysis (PCA) of unfolded fluorescence landscapes confirmed the
PARAFAC results and showed patterns of samples related to time of storage. Partial least squares
(PLS) calibration models of color at 420 nm had a high model error due to the very high color range
of the raw sugars, but variable selection performed on the fluorescence data revealed that all three
fluorophores were correlated to color. The (275, 350) nm fluorophore is considered as a color precursor
to the color developed on storage and the (340, 420) nm and (390, 460) nm fluorophores show colorant
polymer characteristics.
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INTRODUCTION

It has been known for many years that commercial
sugars exhibit characteristic fluorescence, which can be
used to obtain information of minor constituents in the
sugar. Carpenter and Wall (1972) described the fluo-
rescence of several raw sugars, raw sugar molasses, and
sugar refinery samples. Contour charts of fluorescence
landscapes with several excitation and emission wave-
lengths were used to inspect the fluorescence emission
peak pattern in the different process samples. Four
peaks were often repeated: (360, 430) nm, (280, 320)
nm, (250, 430) nm, and (400, 600) nm, describing the
position of the peaks (maximum excitation wavelength,
maximum emission wavelength). They concluded that
the fluorescence measurements seemed very informa-
tive, but the contour plots seemed to be very complex
with several components in some of the peaks.

In recent years spectrofluorometry has successfully
been applied to the beet sugar manufacturing process
with the use of multivariate data analysis (Munck et
al., 1998). The same approach with multiple excitation
and emission wavelengths used by Carpenter and Wall
(1972) has been employed, but chemometric evaluation
of the excitation-emission landscapes is used to extract
the relevant information from the data. In a study of
beet sugar samples it was possible to classify white
sugar samples according to factory and to predict quality
parameters such as R-amino nitrogen, color, and ash
from fluorescence data of these samples (Nørgaard,
1995). The fluorescence data of thick juice samples
showed more ambiguous results due to the more com-

plex sample composition. Another study of beet sugar
samples utilized the three-dimensional structure of the
fluorescence excitation-emission landscapes to resolve
spectral excitation and emission profiles of fluorophores
in sugar with a multi-way chemometric model, PARA-
FAC (Bro, 1999). Four fluorescent components were
found to capture the variation in the fluorescence data
of 268 sugar samples collected from a beet sugar factory
during a campaign, where two of them showed spectra
with a close similarity to the pure fluorescence spectra
of the amino acids tyrosine and tryptophan. The con-
centrations of the four components estimated from the
sugar samples could be correlated to several quality and
process parameters, and they were characterized as
potential indicator substances of the chemistry in the
sugar process. A recent paper has confirmed these
findings by use of HPLC analysis combined with fluo-
rescence measurements on thick juice samples and
evaluation by PARAFAC (Baunsgaard et al., 2000).
Seven fluorophores were resolved from thick juice. Apart
from tyrosine and tryptophan, four of the fluorophores
were identified as high molecular weight compounds,
which were related to colorants absorbing at 420 nm.
Three of the high molecular weight compounds were
found to be possible Maillard reaction polymers. The last
of the seven fluorophores indicated a compound with
polyphenolic characteristics.

The studies of beet sugar sample fluorescence using
chemometric analyses have contributed new informa-
tion, which may help in the understanding of the
chemistry taking place during the manufacturing of beet
sugar. Cane and beet sugar production, though with
origin in very different plant material, share many
production-related chemical reactions, especially in the
development of colorants (Godshall, 1996). The results
of raw cane sugar fluorescence by Carpenter and Wall
(1972) suggest that similar use of chemometric methods
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on cane sugar process samples could provide additional
knowledge of the chemistry in cane sugar processing.

In this work, 47 raw cane sugar samples were selected
as a data set. The data set represented a very wide
selection of raw sugars, where few of the samples shared
the same origin or production year. Some of the samples
had been stored for many years and had darkened
during the years due to the formation of additional color.
Thus, the data set should amply span the variation in
produced raw sugars as normally encountered in the
cane sugar industry. From the excitation-emission
fluorescence landscapes measured on all the samples,
the systematic variation of the fluorescence in the
samples was extracted with the use of various two-way
and three-way chemometric methods such as principal
component analysis (PCA), partial least squares regres-
sion (PLSR), principal variables (PV), and parallel factor
analysis (PARAFAC). These methods are well-estab-
lished as statistical methods for the analysis of spectral
and highly collinear data structures (Martens and Næs
1993; Bro, 1997). The information thus obtained by
these methods was used to characterize the various
fluorophores in raw sugar and to reveal patterns in the
sample set relating the fluorescence to the chemical
composition of the samples, especially with regard to
color in raw sugar.

MATERIALS AND METHODS

Samples. A sample set of 47 raw cane sugars was collected
representing many different locations and campaign years
(Table 1). Some of the samples represent raw sugars with
special characteristics. Three of the samples (1-3 in Table 1)
had been stored for many years and had darkened during the
years due to the formation of more color. Sample 3 was stored
cold and therefore developed less color relatively than 1 and
2. Samples 32 and 45 (the same sugar as 27) are lab-washed
raw sugars where the outer coating of color has been washed
off. Samples 46 and 47 have elongated crystals due to a high
amount of polysaccharides. The characteristics of these special
sugars are related to color in raw sugar (Ravelo et al., 1991;
Godshall, 1996), and they are used to introduce a larger
variation of color in the sample set.

Preliminarily, several of the sugar samples were selected
as representative samples and were diluted in ion-exchanged
water to different levels of concentration to determine the
concentration quenching of the measured fluorescence. A
concentration of 9.4 mg/mL was chosen as the concentration
level to be used in the fluorescence measurements of all the
sugar samples for the chemometric analysis. This concentra-
tion showed the least concentration quenching of the fluores-
cence by inspection of the landscapes combined with an
acceptable signal/noise ratio for the purest samples.

Reference Color Measurements. The quality parameter
color (as the extinction coefficient at 420 nm absorbance) of
the raw sugar samples was determined according to the
ICUMSA method for raw sugars (ICUMSA Methods Book,
1994). The color values are shown in Table 1.

Fluorescence Measurements. The fluorescence measure-
ments were performed on a Perkin-Elmer LS50 B fluorescence
spectrometer. Nonsmoothed emission spectra were recorded
at 21 excitation wavelengths in the range 250-450 nm with
a 10 nm interval. The emission range was 298-520 nm. Figure
1 shows plots of the fluorescence landscapes of four of the raw
sugar samples, which are very different from one another.
Some of the areas in the landscapes do not conform to true
fluorescence response, such as the Rayleigh scattering peaks,
and they are handled as missing intensity areas, i.e., the white
areas in the plot.

Two-Way Data Analysis. A two-way structure of the
fluorescence landscapes (samples × wavelengths) is obtained
by unfolding the landscape of each sample so that the emission
spectra are arranged in the order of the 21 excitation wave-
lengths. An unfolded landscape is shown in Figure 2. The
missing areas shown in Figure 1 have been removed. The two-
way method principal component analysis (PCA) is used to find
the principal directions of variation in the fluorescence data
(Wold et al., 1987; Martens and Næs, 1993). For each principal
component, a loading common for all the samples is extracted
from the unfolded fluorescence data where the scores reflect
the contribution of that loading in each sugar sample. Another
two-way method, partial least squares regression (PLS), is
used to make predictions of the quality parameter color from
the unfolded fluorescence data (Höskuldsson, 1988; Martens
and Næs, 1993). Full cross-validation is used, i.e., one sample
is predicted at a time from a calibration model consisting of
the rest of the samples, because the very different samples in
the data set makes it difficult to chose larger representative

Table 1. Raw Sugar Sample Set

no. origin year color no. origin year color

1 Argentinaa 1963 37630 25 Nicaragua 1991 6270
2 Florida, USAa 1964 51290 26 Panama 1991 4370
3 Louisiana, USAb 1968 10020 27 Peru 1991 3830
4 Australia 1977 6740 28 Queensland, Australia 1991 3170
5 South Africa 1979 4290 29 Queensland, Australia 1991 3250
6 Barbados 1984 17460 30 Costa Rica 1992 4490
7 Brazil 1984 10250 31 Guyana 1992 3140
8 Jamaica 1984 8470 32 Louisiana, USAd 1992 1470
9 Trinidad 1984 10350 33 Louisiana, USA 1992 2950

10 Brazil 1985 12170 34 Mexico 1992 910
11 Louisiana, USA 1985 5800 35 Panama 1992 2920
12 Dominican Rep. 1986 6580 36 Texas 1996 2210
13 Louisiana, USA 1986 3950 37 Florida, USA 1997 3320
14 Mauritius 1986 4810 38 Louisiana, USA 1997 2360
15 Louisiana, USA 1987 5180 39 Thailand 1997 7510
16 Texas, USA 1987 5880 40 Hawaii, USA 1998 1270
17 Hawaii, USA 1989 3850 41 Costa Rica 1998 2460
18 Hawaii, USA 1989 4560 42 Louisiana, USA 1998 2970
19 Boliviac 1991 340 43 Philippines 1998 5770
20 Cuba 1991 4790 44 Taiwan 1998 2190
21 Dominican Rep. 1991 9400 45 Perud 1991 1750
22 Ecuador 1991 1650 46 Cubae 3290
23 Honduras 1991 8300 47 Cubae 2570
24 Jamaica 1991 7440

a Stored at room temperature. b Stored cold. c Very light raw sugar. d Lab washed, i.e., the outer coating of color washed off. e Elongated
crystals.
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subsets for validation. The total prediction error of the model
is based on all the individual model predictions for the optimal
number of PLS components and it is expressed as the root
mean square of cross-validation (RMSECV):

where Cn
predicted is the estimated color, Cn

reference is the measured
ICUMSA color, and N is the number of samples. RMSECV is
given directly as the prediction error of color in ICUMSA units.
All PCA and PLS models are based on mean-centered data.

The principal variables method (PV) is used to select
excitation-emission wavelength pairs, which describe as much
of the total variance in the data set as possible in relation to
color (Höskuldsson, 1994). Short mathematical descriptions of
the three two-way methods are found in Nørgaard (1995).

Three-Way Data Analysis. Having a three-way structure
such as fluorescence landscape data from several samples
(samples × excitation wavelengths × emission wavelengths),
it can be beneficial to maintain the three-dimensional form
while performing the data analysis. The models obtained from
three-way data analysis may turn out to be more robust, easier
to interpret, and more predictive than their unfolded coun-
terparts (Bro, 1998). The multiway model PARAFAC (Harsh-
man, 1970) fulfills the demand of easy interpretation, because
the model decomposes three-way fluorescence data into spec-
tral excitation and emission profiles of fluorophores in the
samples. The spectra can be used to identify constituents in
the raw sugar samples. Bro (1997) provides a thorough tutorial
of the PARAFAC model. All the PARAFAC models of the raw
sugar fluorescence data were estimated under a nonnegativity
constraint to improve the interpretability of the resolved
profiles. In the model results presented here, the emission
profiles have been estimated under a unimodality constraint
to avoid the interference of artificial extra peaks in the spectra
due to too many missing variables in the data set.

Software for Data Analyses. Calculations were performed
with Matlab for Windows version 5.3 (The MathWorks, Inc.)
and Unscrambler version 7.01 (CAMO ASA). The implementa-
tion of the PARAFAC model was obtained from The N-way
Toolbox for MATLAB (Andersson and Bro, 1999).

RESULTS AND DISCUSSION

Qualitative Analysis of the Raw Sugars. PCA of
the fluorescence data is used to establish some common
relations between the sugar samples based on the
fluorescence information. In Figure 3A a score plot of
the first principal component (PC1) against the second
principal component (PC2) of all the 47 samples is
shown. The numbers in the plot correspond to the
sample numbers in Table 1. The two components

Figure 1. Plots of the excitation-emission fluorescence landscapes of four raw sugar samples from Table 1, which are each very
different from one another. (A) Sample 1; (B) sample 20; (C) sample 42; (D) sample 43. The white areas in the landscape denote
missing data areas due to Rayleigh scattering and other measured areas not conforming to true fluorescence.

Figure 2. Example of an unfolded fluorescence landscape of
a raw sugar sample (sample 43, Figure 1D). Emission spectra
are arranged in the order of the 21 excitation wavelengths (in
total 1021 wavelength variables).

RMSECV ) x1

N ∑
n)1

N

(Cn
predicted - Cn

reference)2
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explain 96% of the fluorescence variation, 85% and 11%,
respectively. The variation explained by PC1 is normally
due to the differences in spectral intensity, and the

fluorescence landscapes of sample 6 and 19 confirm that
they are the two samples with the highest and lowest
overall intensity, respectively. Sample 19 is remarkably
low in color for a raw sugar (Table 1) and the two lab
washed samples (32 and 45), which also have low color
values, are situated in the same end of the PC1. There
are no other patterns of the samples that seem to be
related to PC1, either in terms of the place of origin or
the year of production. The distribution of the samples
along PC2 shows a pattern related to the age of the
samples. This is shown in Figure 3B where the samples
are marked with the year of production. The samples
from the sixties are situated in the lower part of the
plot and the samples from 1996 to 1998 are all situated
in the upper part of the plot. The samples are not
ordered completely by age along PC2, but there is
clearly a trend. Higher order PCs were also examined,
but they did not reveal any conclusive patterns except
that sample 1 was singled out in the PC3 direction.

The loadings of the PCA model contain the informa-
tion about which wavelengths of the fluorescence data
are important for each of the principal components. The
loading vectors of PC1 and PC2 are shown in Figure 4.
The most important emission wavelengths for PC1 are
approximately 420-430 nm when excited at 340-360
nm. Sample 6 has a high fluorescence contribution from
these wavelengths. The excitation and emission wave-
lengths, which are important contributors for PC2, are
centered around 270 and 350 nm, respectively. Sample
42 has a particularly intense fluorescence in that area,
whereas sample 1 has a low contribution. Thus, the
(270, 350) nm fluorescence seems to be connected with
the changes in the raw sugar fluorescence related to the
time of storage and the fluorescence around (350, 425)
nm is the dominating fluorescence in the raw sugar
samples at the chosen concentration.

Resolving Specific Fluorophores by PARAFAC.
It is difficult to extract spectral information of individual
fluorophores from the PCA loadings due to the unfolded
structure of the fluorescence data. Instead, the three-
way model PARAFAC was used to estimate excitation

Figure 3. (A) Score plot of the first principal component (PC1)
against the second principal component (PC2) of all 47 raw
sugars. Numbers correspond to the raw sugars in Table 1. (B)
Same score plot as in panel A, showing the year of production
of each of the 47 raw sugars.

Figure 4. Loading vectors of the first two principal components of the 47 raw sugars as a function of wavelength variables. The
wavelength variables are shown as excitation wavelength•emission wavelength.
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and emission profiles of fluorophores directly from the
three-dimensional fluorescence landscapes. PARAFAC
may be regarded as a three-way PCA with scores and
loadings, but now there are two loadings for each
extracted component (excitation and emission profiles)
and the fluorescence data used is the raw data, not
mean-centered as in the PCA model. PARAFAC models
of the raw sugar fluorescence data were estimated with
one to six components, but the four-component was
chosen as the best model based on split half analysis
validation (Bro, 1998). The scores and loadings of the
model are shown in Figure 5. The first column presents
the scores of samples for each component, the middle
column presents the estimated excitation profiles, and
the last column presents the emission profiles. The
excitation and emission maxima of the spectral profiles
are shown in Table 2. The maxima of components I and
III are close to the wavelengths that were important
for the two first principal components in the PCA. In
Figure 6A a score plot of component I versus component

III is shown, and the distribution of the samples is very
close to that in Figure 3A. This confirms that the PCA
and PARAFAC models have captured the same two
major contributors to the fluorescence in raw sugar.
Components I and III are also recognized as the (280,
320) and (360, 430) peaks reported by Carpenter and
Wall (1972). The last two components in the PARAFAC
model seem to be correlated to component III. Plotting
the scores of component III versus component IV (Figure
6B) reveals that the oldest samples (1-3) have a
relatively higher contribution from component IV rela-
tively than from component III. Component IV is
therefore considered as the component correlating to
color development by storage of raw sugars. This agrees
with the fact that component IV fluoresces at the
highest wavelengths of all the components, which could
signify the fluorescence of color polymers with a growing
fluorochromic structure. The plot of component II versus
component III (plot not shown) has a slight nonlinear
relationship where the samples with low fluorescence
intensity (e.g., sample 19) apparently have a higher
contribution from component II and samples with high
fluorescence intensity have a higher contribution from
component III (e.g., sample 6). The two components have
very similar spectra in Figure 5 and they may represent
two colorants of the same type. The fluorescence of the
darker raw sugar samples tends to appear at somewhat
higher wavelengths than the fluorescence of the lighter
colorants, and this is caused either by small size

Figure 5. Results of a four-component PARAFAC model of the measured fluorescence landscapes of 47 raw sugar samples. The
first column represents the scores of each sample for each component; the second column represents the excitation profile; the
third column represents the emission profile. The spectral profiles are normalized, so that all variance is kept in the sample
scores.

Table 2. Excitation and Emission Maxima of Four
Fluorescence Components Estimated in the PARAFAC
Model of the 47 Raw Sugar Samples

λmax (nm)

component ex em

I 275 350
II 330 400
III 360 420
IV 390 460
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differences in the fluorochromic structure of a colorant
polymer (increasing polymerization as color darkens) or
self-absorption of the fluorescence emission of the darker
samples due to high absorbance of the colorants in the
400-420 nm area. Small wavelength shifts for differ-
ently colored samples will induce the PARAFAC model
to resolve two representative fluorophores such as
components II and III of the many overlapping but
slightly different excitation and emission spectra.

Prediction of Color from Fluorescence of Raw
Sugar. Color is an important parameter for determining
the quality of raw sugar, and because the color value is
defined as the extinction coefficient at 420 nm, color may
be related to one or several fluorophores. Carpenter and
Wall (1972) reported detection of fluorescence from raw
sugar samples when excited at 420 nm. The ICUMSA
color values of all the raw sugar samples are presented
in Table 1. The color range of the samples is very large
(340-51 290), which reflects the very different color

compositions of the samples. As a way to correlate the
color of the raw sugar samples with the measured
fluorescence landscapes, PLS calibration models were
built from the unfolded fluorescence data set. The
predictions of color from the models were validated with
full cross-validation. A PLS model of all 47 samples with
three PLS components is presented in Table 3. The
model error RMSECV, expressed in ICUMSA units, is
high compared with the color range of the samples, and
the correlation coefficient between the measured color
and the predicted color is only 0.59. It appeared that
the two oldest samples (1 and 2) with a lot of developed
color during storage caused the poor model results. A
new PLS model omitting the two samples clearly
improved the correlation coefficient to 0.88 (Table 3). A
plot of the correlation of the predicted color from PLS
model of the fluorescence data and the reference ICUM-
SA color of the 45 remaining raw sugar samples is
shown in Figure 7. The model error of 1622 for the new
PLS model is still high when it is considered that the
range of the sample color has been lowered as well. PLS
modeling of subsets including only samples with low
color gave the same relative model error to the modeled
color range with no apparent model improvement.
Previously, prediction of color from fluorescence data
of white beet sugar samples has been reported with a
satisfactory result, where a sample set consisting of 87
beet sugar samples from five different factories was
modeled with five PLS components with R ) 0.94 and
RMSECV ) 2.4 (color range ) 11-44) (Nørgaard, 1995).
The difficulties in predicting the color of the raw sugar
samples from the measured fluorescence are probably
explained by the very high concentrations of color in the
raw sugar sample set and the very varied color distribu-
tion in the samples. Furthermore, the different origins
and production years of the samples ensure a global
prediction model but the uniformity of the spectral
information, which is needed in a good prediction model,

Figure 6. (A) Score plot of component I versus component
III from the PARAFAC model. Note the similarity to the plot
in Figure 3A. (B) Score plot of component III versus component
IV from the PARAFAC model.

Table 3. Results of the PLS Models of the Fluorescence Data for the Prediction of Color Using Full Cross Validation

no. of samples no. of variables no. of PCa Rb RMSECVc ranged meane

47 full spectrum (1021) 3 0.59 7072 340-51 290 6720
45f full spectrum (1021) 3 0.88 1622 340-17 470 5040
45f 3g 3 0.87 1648 340-17 470 5040

a Number of PC is the optimal number of PLS components. b R is the correlation coefficient. c RMSECV is the model error in ICUMSA
color units. d Range of the ICUMSA color. e Mean of the ICUMSA color. f Omitting samples 1 and 2 with high storage color. g (270,346),
(340,421), (390,457); three excitation-emission (Ex,Em) wavelength variables selected from the unfolded fluorescence data by the PV
method.

Figure 7. Plot showing the correlation of the predicted color
of raw sugar from the PLS model of the fluorescence data using
three PLS components and the ICUMSA color of 45 raw sugar
samples. Correlation coefficient ) 0.88 and the model error is
1622 in ICUMSA color units.
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decreases. The nonlinear effects that influence the fit
of the models are consistent with the fact that a linear
relationship between fluorescence and color is only valid
for samples with very low absorbance, i.e., very low
color. The fluorescence is concentration-quenched at
high color values and nonlinear effects occur. For
example, sample 2 with the highest color displays a
moderate fluorescence, which is the reason the sample
did not conform to the PLS model of color (Table 3).
Therefore, samples with very low color such as white
beet sugars and refined cane sugars and sample sets
with more restricted origin should generally produce
better PLS models of color.

Selection of Significant Fluorescence Wave-
lengths. The above PLS models are based on all the
1021 wavelength variables of the unfolded fluorescence
data, but not all variables are important for predicting
color. The PV method is used to select the fluorescence
variables that are important for color prediction. The
three wavelength variables 610, 139, and 844 (Figure
2) were selected in that order. This is the same number
as PLS components used in the unfolded landscape
models. Their (excitation, emission) wavelengths are
(340, 421) nm, (270, 346) nm, and (390, 457) nm,
respectively. A three-component multiple linear regres-
sion (MLR) model using the three variables for predict-
ing color is made from all samples except 1 and 2 (Table
3). The prediction results were very close to the model
using all 1021 wavelength variables, and the plot of the
predicted color versus the reference color was almost
identical to Figure 7. Apparently, only the three selected
wavelength variables are needed for modeling color at
the same level as a full-spectrum model. A comparison
with the excitation and emission maxima of the four
resolved components from the PARAFAC model in Table
2 reveals that the selected variables (340, 421), (270,
346), and (390, 457) correspond to combined components
II/III, component I, and component IV, respectively. The
fact that components II and III both correspond to one
of the wavelength variables supports the supposition
that they belong to the same type of fluorophores. Thus,
it is also demonstrated that the PARAFAC model on
three-way data can extract more precise information,
such as small spectral changes, than the more crude
PV method on the two-way unfolded data.

Characteristics of the Resolved Fluorophores.
It is interesting to find that all “three” fluorophores
estimated in the PARAFAC model are correlated to the
ICUMSA color. The choice of using absorbance at 420
nm as the wavelength to determine color was debated
for many years before it was made official by ICUMSA
(Godshall, 1997). If the three fluorophores are colorants
or color precursors, the use of 420 nm for color measure-
ments must be considered as a sensible compromise.
The difficult part is to identify the three resolved
fluorophores as true constituents of raw sugar. Some
indications have already been given. The fluorescence
excitation and emission spectra of component I are
located in the ultraviolet region and the component
must be considered as a color precursor. The PCA shows
that the component is negatively correlated to color
development in stored sugars (1 and 2), whereas there
is a high contribution of the component in some of the
newest raw sugar samples in the data set (42 and 44).
Concentration quenching of the ultraviolet fluorescence
in the highly colored sugars could be the reason for this,
but Figure 3A shows that sample 43 with high color has

a fair contribution of component I, i.e., situated in the
upper end of PC2. Therefore, component I is defined as
a color precursor that is decreased during storage of the
sugar due to participation in color-forming reactions,
possibly polymerizations. Component II/III from the
PARAFAC model is defined as a fluorophore with (340,
420) nm as the approximated excitation and emission
maximum. The component has a very intense fluores-
cence (PCA) and in the selection of important wave-
length variables related to color, the (340, 421) variable
was selected first. The close correlation between this
fluorescence component and color imply that the com-
ponent is a colorant. The fact that the excitation spectra
of II/III in Figure 5 are not extended to the 420 nm
wavelength is likely due to the estimation of component
IV in the PARAFAC model as an individual component.
In some of the samples component IV has an individual
peak and in other samples it is only an extension of the
peak from component II/III. This is shown in Figure 1
where the landscape of sample 43 (Figure 1D), which
has a high contribution from component II/III, has one
peak at (420, 345) nm whereas sample 1 (Figure 1A)
has an extra peak at (380, 450) nm due to the storage
color development. Consequently, component IV is
considered as a colorant polymer extending from com-
ponent II/III during development of additional color and
it is not considered as a real individual fluorophore.

CONCLUSIONS

It has been demonstrated that chemometric methods
applied to multiwavelength fluorescence data can de-
termine the chemical characteristics of fluorophores in
raw cane sugar without knowledge of their exact chemi-
cal structure. Three principal fluorophores are found in
raw sugar and one of them is characterized as an
ultraviolet color precursor that participates in color
development during storage. The other two fluorophores
fluoresce in the visible wavelength area and are poten-
tial colorants. The colorant fluorophores show a relation
in their fluorescence behavior, perhaps as polymers,
where the darker colorant fluoresces at higher wave-
lengths. Since all the resolved fluorophores correlates
to color, they can be used as indicator substances in
further studies of the color development in cane sugar
processing.
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